Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1.

نویسندگان

  • F Heath Damron
  • Michael R Davis
  • T Ryan Withers
  • Robert K Ernst
  • Joanna B Goldberg
  • Guangli Yu
  • Hongwei D Yu
چکیده

Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild-type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non-mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing non-mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility.

AlgR is a key Pseudomonas aeruginosa transcriptional response regulator required for virulence. AlgR activates alginate production and twitching motility but represses the Rhl quorum-sensing (QS) system, including rhamnolipid production. The role of AlgR phosphorylation is enigmatic, since phosphorylated AlgR (AlgR-P) is required for twitching motility through the fimU promoter but is not requi...

متن کامل

One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...

متن کامل

Draft Genome Sequence of a Stable Mucoid Strain of Pseudomonas aeruginosa PAO581 with a mucA25 Mutation

A mutation in the mucA gene, which encodes a negative regulator of alginate production in Pseudomonas aeruginosa, is the main mechanism underlying the conversion to mucoidy in clinical isolates from patients with cystic fibrosis (CF). Here, we announce the draft genome sequence of the stable alginate-overproducing mucoid strain P. aeruginosa PAO581 with a mucA25 mutation, a derivative from the ...

متن کامل

Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development.

An analysis of the Pseudomonas aeruginosa genomic sequence revealed three gene clusters, PA1381-1393, PA2231-2240, and PA3552-3558, in addition to the alginate biosynthesis gene cluster, which appeared to encode functions for exopolysaccharide (EPS) biosynthesis. Recent evidence indicates that alginate is not a significant component of the extracellular matrix in biofilms of the sequenced P. ae...

متن کامل

Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation.

Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 81 2  شماره 

صفحات  -

تاریخ انتشار 2011